
Intersection Theory on Surfaces
Skyler Marks∗

May 14, 2025

Abstract

Intersection theory is a cornerstone of modern algebraic geometry, and the case
of surfaces is the simplest and most classical case thereof. This paper develops the
intersection pairing and intersection multiplicity, following Hartshorne’s “Algebraic
Geometry”, and presents some examples.
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1 Introduction
Intersection theory has interested me since I first learned about algebraic geometry.
There’s something paradoxical about how simultaneously intuitive and technical it is,
the simple ideas it deals with juxtaposed with it’s complex and consequential conclusions.
It doesn’t put tremendous strain on the imagination to see the origins of this discipline
dating back to antiquity. After all, intersection theory unites the problem of determining
incidence relations with the problem of solving a system of polynomial equations. In our
education, we first see this unification accomplished by way the introduction of Cartesian
coordinates. However, as these coordinates are generally real, the theory coming from this
algebraic geometry would be extremely dissatisfying; there are few, if any, unifying laws
to compare the intersections of the vanishing sets of even relatively low-degree polyno-
mials. This is partially mitigated by the introduction of complex coordinates. Over an
algebraically closed field, “most” pairs of curves intersect nicely. However, there is still
the problem of intersections escaping to infinity; although, for example, a “general” pair
of lines in the plane will intersect, there is a single case where they do not. What’s more,
that case arises as the lines are continuously and very reasonably deformed. To remedy
this, we introduce projective geometry. Projective space, the space of all lines through
the origin in a vector space, gives a satisfactory answer to the problem of intersections
escaping to infinity, but there are still cases where a family of curves, varying “nicely”, will
exhibit pathological intersection behaviors. For example, as we increase the c coefficient
in the parabola y − x2 + c, we have two real roots when c is negative, exactly one when c
is zero, and two imaginary roots when c is positive. The answer to this behavior where a
reasonably-varying family of curves exhibits non-constant intersection behavior turns out
to be counting intersections “with multiplicity”, a way of dealing, algebraically, with the
“limiting” cases when two or more intersections become close enough together to coincide
and occur “on top” of each other. This is the topic of this exposition, and perhaps the
man focus of intersection theory in general.

Most of this exposition follows [4], particularly Chapter V, Section 1 with some ele-
ments from other chapters. I have endeavored to focus not tireless completeness (recording
each proof necessary to accomplish the goals of this paper), but instead to present only
the proofs of the results which I found to be unintuitive or in some way central to the
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understanding of the techniques this paper presents, or for which I found the proofs in
[4] exceedingly terse. I have presented, for example, a proof of Bertini’s theorem which,
although it may not lie within the scope of this paper in the strictest sense, forms the
basis for much of the “ethos” of the intersection pairing. Conversely, I have merely cited
some technical results used in examples, even though the proofs for those are perhaps far
more consequential. In addition to [4], I referenced [6] for algebraic geometry; I worked
out of [1] primarily for commutative algebra, supplementing my understanding with [3].
Throughout, I referred to [5].

2 Preliminaries
As is standard in algebraic geometry, rings are commutative, unital, and (as I have no
interest in being macho; c.f. [6], 10.3.8) noetherian. A prime ideal p of a ring R is an ideal
such that R/p is an integral domain, and a maximal ideal m is an ideal such that R/m is a
field. In particular, the unit ideal R is neither prime nor maximal. Curves and surfaces are
varieties of dimension 1 and 2, respectively; varieties are integral and separated schemes
of finite type over a ground field k = k̄, and I state explicitly the nonsingular hypothesis
when I need it.

2.1 Some Algebraic Lemmas
Lemma 2.1. Let R be a k-algebra and (f), (g) principal ideals for f, g nonzero divisors.
Then

dimk(R/(fg)) = dimk(R/(f)) + dimk(R/(g))

supposing all dimensions are finite.

Proof. Consider the sequence of k-modules

0 → R/(f)
mg−−→ R/(fg) → R/(g) → 0

Where mg is multiplication by g. By the third isomorphism theorem (c.f. [2], for example),
R/(fg)/(gR/(fg)) ∼= R/(g) so this sequence is exact. But dimension is additive on short
exact sequences, and we are done.

Lemma 2.2. Let R be a ring, I an ideal of R, and A an R-algebra. Then

(R/I)⊗R A ∼= A/(IA)

Proof. The sequence
0 → I

i−→ R
q−→ R/I → 0,

where i is the inclusion and q is the quotient map, is exact. Tensoring is exact on the
right, so

I ⊗R A
i⊗1−−→ R⊗R A

q⊗1−−→ R/I ⊗R A → 0

3



is exact. By the isomorphism r ⊗R a = 1 ⊗R ra → ra, we obtain that I ⊗R A is exactly
IA and R ⊗R A is exactly A; moreover, we can rewrite i ⊗ 1 as a map from IA → A as
simply the inclusion (which is injective). Thus

0 → IA
i⊗1−−→ A

q⊗1−−→ R/I ⊗R A → 0

is exact, and R/I ⊗A is A/AI

Corollary 2.3. Let R be a ring, and I and J be ideals of that ring. Then

(R/I)⊗R (R/J) ∼= (R/I)/J

Proof. Note that R/J is an R-algebra, and apply Lemma 2.2.

Lemma 2.4. A regular local ring is an integral domain.

Proof. C.F. [1], Lemma 11.23.

We use the following lemma implicitly throughout the rest of this paper.

Lemma 2.5. Let X be a scheme over a field k and f : Y → X a closed subscheme with
sheaf of ideals I . Let P be a geometric point in X. Then if mP is the maximal ideal of
the local ring OX,P for P ∈ X, we have that IP ⊆ mP if and only if P ∈ Y , i.e. if and
only if f−1(P ) 6= ∅.

Proof. Consider the exact sequence of k-algebras

0 → I
ker f♯

−−−→ OX
f♯

−→ i∗OY → 0.

An exact complex of sheaves induces an exact sequence on stalks; in particular, the se-
quence

0 → IP
ker f♯

−−−→ OX,P
f♯

−→ (i∗OY )P → 0

is an exact sequence of k-algebras for all P ∈ X. Note that the stalk of the structure
sheaf of any scheme cannot be zero at any point in that scheme, as then there would be
no neighborhood of that point which was isomorphic to an affine scheme (as the stalks of
the structure sheaves of an affine scheme is the localization of a nonzero ring, and thus
nonzero). From this we see that ker f ♯ cannot surject onto OX,P , and so IP must be
a proper ideal of OX,P . But as mP is the single maximal ideal, this means IP ⊆ mP .
Conversely, if f−1(P ) = ∅ then (i∗OY )P = 0, because Γ(∅,F ) = 0 for each sheaf F by
definition, and ker f ♯ is an isomorphism. In particular, IP is not contained in mP .

2.2 Bertini’s Theorem
Perhaps the foundation of intersection theory on surfaces is characterizing the cases when
the set-theoretic intersection is not what we would expect, and demonstrating both that
this doesn’t happen most of the time (i.e. when the divisors in question are in general
position) and that we can always “fix” that failure by some deformation (deforming divisors
up to linear equivalence, to be precise). Both these notions are provided by the following
theorem.
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Remark 2.6 (Caution). Here, when A and B schemes embedded into X, we write A ∩ B
for A×X B. In the future, the intersection A∩B will denote the set theoretic intersection.

Theorem 2.7 (Bertini’s Theorem). Let X be a nonsingular closed subvariety of Pn
k , where

k is an algebraically closed field. There is a hyperplane H ⊂ Pn
k , not containing X, such

that the scheme H ∩X is regular at every point, and the set of all such hyperplanes H is
open and dense in |H|, when |H| is viewed as a projective space.

Proof. Let x be a closed point in X, and let Bx be the set of hyperplanes H for which
either X ⊂ H or x ∈ H ∩X is a singular point of H. Then H is determined by a nonzero
global section f of OPn(1), as is every hyperplane. Fix a global section f0 of OPn(1) such
that x 6∈ H0 := V (f0). We then define a map of k-vector spaces

φx : Γ(Pn,OPn(1)) → OX,x/m
2
x

as follows. Since f is a global section of OPn(1), we have that f/f0 is a regular function
on Pn −H0, which restricts (or pulls back) to a regular function on X −X ∩H0. We let
φx(f) be the image of f/f0 in OX,x/m

2
x. The scheme H ∩X is defined in a neighborhood

of x by (the restriction of) f/f0, because away from the locus where f0 “vanishes” or
“blows up” (where the numerator or denominator lies in the maximal ideal), dividing by
it does not change the vanishing locus of f . Thus we see that x ∈ H ∩ X if and only if
φx(f) ∈ mx, and x is a nonregular point of H ∩X if and only if the local ring OH∩X,x =
OX,x/φx(f) (this equality follows from an argument in coordinates) is nonregular. This
occurs if and only if φx(f) ∈ m2, because then the quotient OX,x/φx(f) will have Krull
dimension one less than the Krull dimension of OX,x (c.f. [1], Corollary 11.18). Meanwhile
dimk((mx/φx(f))/(m

2
x/(φx(f)))) = dimk((mx/m

2
x)/(φx(f)))) = dimk mx/m

2
x as φx(f) ∈

m2
x, so the ring cannot be regular. This is the only way for the local ring to not be

regular, as otherwise mx is generated by n−1 generators and Krull’s height theorem gives
regularity. Thus hyperplanes in Bx are exactly those given by f ∈ ker(φx) (as f/f0 is
zero in the local ring of X, before passing to the quotient, if and only if H contains X).
Then since x is a closed point and k is algebraically closed, the maximal ideals of the
local rings of projective space over k are generated by linear forms in the coordinates on
that projective space. This passes to the local rings of X as well, and so we have that φx

is surjective because each generator of the maximal ideal of the local ring, together with
all elements not in the maximal ideal, can be written as f/f0 for some f . If dimX = r,
then dimOX,x/m

2 = dimm/m2 + 1 = r + 1, as X is nonsingular. Finally, we have
dimk Γ(Pn,OPn(1)) = n+ 1, so the dimension of the kernel is n− r. Thus the dimension
of Bx as a projective space is n− r − 1.

Now we consider the complete linear system |H| as a projective space, and study the
subset B of X×|H| given by B = {(x,H ′)|H ′ ∈ Bx} =

⋃
x∈X{x}×Bx. Then B is the set

of all pairs (x,H ′) where x is a point and H is a hyperplane described by a function f for
which f/f0 vanishes to order two at x. Vanishing to order two is a closed condition1, so B
is closed; we give B the reduced induced subscheme structure. Further, the map B → X

1There is a subtlety here involving choice of f0. Effectively, we can cover B by open sets, to each of
which we associate a different f0. We then obtain that B is closed in each open set and thus closed in the
ambient space.
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given by (x,H) 7→ x is a map with fiber of dimension n − r − 1, and is also surjective.
Thus B has dimension (n − r − 1) + r = n − 1 (as the dimension of the total space is
the dimension of the base plus the dimension of the fiber). As such, the image of the
second projection p2 : B → |H| can have dimension no more than n− 1. Both projections
are proper, since X is projective, and thus closed; therefore we see that π2(B) is a closed
subset of dimension ≤ n− 1. Thus |H| − π2(B) is open and dense in |H|.

Remark 2.8. The same result holds if X has a finite number of singularities, as the hyper-
planes intersecting those singular (closed) points form another proper closed subset of |H|,
and the intersection of finitely many open dense subsets is again open and dense. Indeed,
the hyperplanes intersecting a single point x are exactly those hyperplanes defined by
rational functions f ∈ Γ(Pn,OPn(1)) which ‘vanish at x’ (have φx(f) ∈ mx for some local
trivialization φx : OPn(1)|U ∼= OPn |U), which is a closed condition and does not describe
all hyperplanes in Pn.

3 The Intersection Pairing
The goal of this section is to construct the intersection pairing mapping DivX ×
DivX → Z. As is common in mathematics, especially during the categorical age, we
will define our intersection paring not as a construction but as anything that satisfies a
list of properties, and then demonstrate that there is a construction which satisfies those
properties. The main player here will be divisors. We’ll work with Weil divisors, which
lend themselves to expression as subschemes of a surface:
Remark 3.1. Let X be a surface and D be an effective divisor. We can regard D as a
subscheme of X in the following way; let Ui

∼= SpecAi be an open affine cover over which
D is given in Ui as fi. Then let D′

i be the closed subscheme of Ui given by Ai/(fi). On
intersections Ui ×X Uj we have that fi/fj is a regular invertible function, yielding an
isomorphism between D′

i|Uj and D′
j |Ui . We can glue along these isomorphisms to obtain a

closed subscheme i : D′ → X. Note further that L (−D) is given locally on Ui by fiOUi ;
this means that the following short exact sequence is exact for every point P

0 → L (−D)P → OU,P → O(D′) → 0.

This implies that it is exact globally, and so L (−D) is the sheaf of ideals of O(D′). We
generally identify D′ with D in what follows.

Definition 3.2. Let C and D be curves on a surface X. Then C and D intersect
transversely at a point P if P lies in C ∩D and for locally defining functions f, g for
C,D respectively in a neighborhood of P restrict to functions f |P and g|P which generate
the maximal ideal mP . The divisors C and D intersect transversely if they intersect
transversely at every point in C ∩D.

Remark 3.3. The main requirement that we expect an intersection pairing to have is that it
should generalize the notion of counting intersection points with a transversal hypothesis;
transversality captures the notion of “passing through without multiplicity”, or the “ideal”
intersection. For this reason, we require our intersection pairing to satisfy
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Axiom 1. If C and D are nonsingular, irreducible, effective divisors in a surface X which
intersect transversely, then:

C ·D = #(C ∩D)

Remark 3.4. This Axiom 1 differs slightly from the corresponding axiom in [4], as it
requires only irreducible effective divisors satisfy C · D = #(C ∩ D). This is justified
because we still obtain that the intersection pairing is unique, so any intersection pairing
satisfying [4]’s stronger condition must also satisfy our weaker condition, and thus be the
same as ours. The reason we make this change is to allow an easier proof of Lemma 3.13.
Remark 3.5. The reason we want to count exactly the set-theoretic intersection points only
when we have transversality is that we want our intersection pairing to be invariant under
some sort of deformation; in particular, linear equivalence of varieties. For this reason,
we also require our pairing descend to the Picard group; that is, to only depend on linear
equivalence class. Finally, we also require our intersection pairing to be symmetric and
Z-bilinear, because (intuitively) the “number of points” in the intersection of two varieties
shouldn’t depend on the order you intersect them, and should be additive in each of the
curves.

Definition 3.6. An intersection pairing is any symmetric, bilinear pairing · : DivX ×
DivX → Z which satisfies Axiom 1 and induces a well-defined pairing on PicX.

We will soon show that these properties determine the intersection pairing entirely.
Before this, however, we need some preliminary results. We begin with some lemmas
which we will use to work with the fiber product as the scheme-theoretic intersection.

Lemma 3.7. If A,B are closed subschemes and C an open subscheme of X, then

1. A|C ∼= A×X C

2. (A×X C)×X (B ×X C) ∼= A×C B.

Proof. Follows from https://stacks.math.columbia.edu/tag/01JO and Corollary 2.3
(for (2)).

Remark 3.8. Lemma 3.7, Item 1 could (and probably should) be definitional, but we are
attempting to follow conventions from [4].

Lemma 3.9. Let C and D be divisors which share no irreducible component in a smooth
surface X, and suppose C ×X D contains a point P and is regular at that point. Then C
meets D transversely at that point.

Proof. Suppose C and D are defined respectively by f and g in an affine neighborhood
U ∼= SpecA of the point P . Suppose OC×XD,P is regular. Then since C and D share no
irreducible component, C×XD has dimension 0 and so mC×XD,P /m

2
C×XD,P has dimension

zero as a vector space over k, meaing mC×XD,P = m2
C×XD = (0) and thus OC×XD,P

∼= k.
Recall, however, that OC×XD,P

∼= (A/(f) ⊗A A/(g))P ∼= (A/(f, g))P by Corollary 2.3.
Moreover, by [1], Corollary 3.4 (localization commutes with quotients2) (A/(f, g))P ∼=
AP /(f, g). Since this is a field, (f, g) is a maximal ideal; since AP is a local ring, that
maximal ideal is unique and must be mP .

2Although [1] shows this only for modules, one can generalize the argument to algebras.
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We will need the irreducible hypothesis to prove the lemma which will allow us to move
varieties and compute the intersection pairing; however, we will not always necessarily have
it. We will have access, by way of Theorem 2.7, to a large supply of smooth varieties, and
so we show that this suffices.

Lemma 3.10. A smooth, connected scheme is irreducible.

Proof. Suppose X is connected and smooth but not irreducible. Then two of the irre-
ducible components Y and Y ′ must intersect at some point P . Each neighborhood of P
then intersects both components, and thus there is an open affine U ∼= SpecA which inter-
sects both components. Then there exist nontrivial ideals I and J such that Y ∩U ∼= V (I)
and Y ′ ∩ U ∼= V (J), with V (I) ∪ V (J) ∼= U , or equivalently V (IJ) ∼= U . But this means
IJ is contained in every nontrivial ideal, and thus contained in the nilradical. We can
perform this for every affine open set containing P , and each open set containing P con-
tains an affine open containing P , so the local ring OX,P at this point contains a zero
divisor pair de = 0. By Lemma 2.4, then, we obtain a contradiction as the local ring must
be regular, and the lemma is proven.

We now prove the main lemma allowing us to move vareties in our surface in order to
compute the intersection pairing. This can be viewed, perhaps, as the lemma which deals
with the more pathological cases, in contrast to a following lemma.

Lemma 3.11. Let C1, ..., Cr be irreducible curves on the surface X, and let D be a
very ample divisor. Then there is an irreducible nonsingular divisor D′ which is linearly
equivalent to D, and meets each of the Ci transversely.

Proof. Let ι : X → Pn be the embedding with respect to which D is very ample. Then each
divisor linearly equivalent to D has an associated line bundle which is isomorphic to the
pullback of the hyperplane bundle on Pn through ι. By Theorem 2.7 the set of hyperplanes
H such that H ×Pn X is nonsingular and H ×Pn Ci is also nonsingular for all Ci is a finite
intersection of dense sets, and thus dense. Furthermore, H ×Pn X has associated line
bundle ι∗O(H) which is isomorphic L (D); thus H ×Pn X is linearly equivalent to D.
Since H×Pn X is connected and smooth, by Lemma 3.10 we obtain irreducibility. Finally,
since X contains Ci, we have that H ×Pn Ci embedds into H ×Pn X, and in particular,
H ×Pn X ×Pn Ci = H ×Pn Ci. As such, the fact that the intersections H ×Pn X ×Pn Ci

contain only regular points means by Lemma 3.9 the intersections are transversal and we
obtain the required result.

Lemma 3.12. Let D be an effective divisor on a smooth curve C, viewed as a subscheme
by Remark 3.1. If D is given near a point P ∈ C by f , we have that dimk OD = ηP (f).
Thus

degD =
∑

P∈SuppD

dimk OD

Proof. Since D is effective, in each local ring we have f = gnP where gP is the generator
of the maximal ideal and n ≥ 0. Thus we have the exact sequence:

0 → (gnP )OC,P → OC,P → OD → 0
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and since OC,P is a principal ideal domain, OD has dimension n. The second statement
follows from this and the fact that

degD =
∑

P∈SuppD

ηP (fP )

where fP is a local defining function near P .

We now prove the main lemma allowing us to relate the set-theoretic intersection to
the intersection pairing or scheme theoretic intersection. This lemma could be viewed as
the input insuring that our intersection pairing matches up well with “reality” - i.e, in the
transverse case, it matches the set theoretic intersection.
Lemma 3.13. Let C be a curve on a surface X, and let D be any curve meeting C
transversely. Then

#(C ∩D) = degC(i
∗(L (D)))

where i is the inclusion of C into X.
Proof. Note first that the underlying sets of C ×X D is C ∩D, by the universal property
of the fiber product. Moreover, since D and C meet transversely, they cannot share an
irreducible component; if they did, at any point along that component the ideal generated
by one locally defining function would be contained in the other (and thus not generate
the maximal ideal at that point, as otherwise the Krull dimension of the local ring would
be at most 1, the dimension of a principal ideal). Thus C ∩D is a discrete set of points.
Furthermore, we may suppose that C and D are both smooth in a neighborhood of each
of the intersections, as the maximal ideal is given by two generators and thus m/m2 is two
dimensional. This allows us to apply Lemma 3.12. Since L (−D) is the sheaf of ideals for
D, we have the short exact sequence

0 → L (−D) → OX → i∗OD → 0

where j : D → X is the inclusion. Since closed embeddings are flat, the pullback through
i is exact, so we obtain

0 → i∗L (−D) → OC → i∗j∗OD → 0.

Let Ui
∼= SpecAi be an affine open cover of X, such that C is given on Ui by Ai/(fi) and

D by Ai/(gi) (Remark 3.1). Then OD is given on Ui by Ai/(gi), and (since i is patched
together from the quotient maps i♯ : A → A/(fi)), we have that on stalks

(i∗j∗OD)P ∼= i−1(j∗OD)⊗OX
OC

∼= (Ai/(gi))P ⊗A (A/(fi))P ,

(where we view P as a prime ideal of A), and finally the right hand side is isomorphic
to (Ai)P /(gi, fi), by Corollary 2.3 and the fact that localization commutes with both the
tensor product and quotients. But (Ai)P /(gi, fi) ∼= k, by the transversality hypothesis.
Applying Lemma 3.12 yields that i∗L (−D) is the sheaf of ideals for a divisor which has
degree ∑

P∈C∩D
dimk(k) = #(C ∩D).

Since pullbacks commute with duals for invertible sheaves, i∗L (−D) is also the sheaf of
ideals for the divisor associated to i∗L (D), and we are done.
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Remark 3.14. At this point, the only difficult task is demonstrating that if C ∼ C ′ both
meet D transversely, then #(C ∩D) = #(C ′ ∩D). If this holds, then Lemma 3.11 gives
us the ability to perturb very ample divisors by linear equivalence in order to obtain a
transversely intersecting divisor, which in turn yields a well-defined formula. Then it just
remains to extend the definition to non-ample divisors, which we do by finding ample
divisors linearly equivalent to the non-ample divisors and intersecting those, using the
properties of the intersection product on ample divisors to compute a meaningful result.
In particular, we are ready to prove the

Theorem 3.15. There exists a unique intersection pairing · on any smooth projective
surface X.

Proof. We begin with uniqueness. Suppose H is an ample divisor on X. Given any pair
of divisors C,D on X, we can find (by the definition of an ample divisor) an integer k > 0
such that L (C + kH),L (D+ kH), and L (kH) are all generated by global sections. We
can also find an l such that lH is very ample, meaning that n = k + l has the property
C + nH,D + nH, and nH are all very ample. Then by Lemma 3.11 we can choose
nonsingular, irreducible curves C ′, D′, E′, F ′ which satisfy

C ′ ∼ C + nH (1)
D′ ∼ D + nH, transversal to C ′ (2)
E′ ∼ nH, transversal to D′ (3)
F ′ ∼ nH, transversal to C ′ and E′ (4)

Then in particular we have C ′ − E′ ∼ C and D′ − F ′ ∼ D. Then we have, by bilinearity
on the Picard group that any intersection product, if it exists, must satisfy

C ·D = (C ′ − E′) · (D′ − F ′) = C ′ ·D′ − C ′ · F ′ − E′ ·D′ + E′ · F ′

But then by Axiom 1, since D′ and F ′ are transversal to C ′, F ′ is transversal to E′, and
E′ is transversal to D′, we have

= #(C ′ ∩D′)−#(C ′ ∩ F ′)−#(E′ ∩D′) + #(E′ ∩ F ′)

Which is a well-defined unique integer independent of intersection pairing. Thus any
intersection pairing is unique.

We now seek to show that such a pairing exists. First we work only on the set of
very ample divisors. We wish to define C · D to be #(C ′ ∩ D′), where C ′ ∼ C is non-
singular and irreducible and D′ ∼ D is nonsingular, irreducible, and transverse to C ′

(both by Lemma 3.11). However, this is only well-defined if the condition in Remark 3.14
holds, namely if D′′ ∼ D′ is nonsingular and irreducible then #(C ′ ∩D′′) = #(C ′ ∩D′).
Recall (Lemma 3.13) that #(C ′ ∩ D′) = degC′(L (D′) ⊗ OC′); but this is the same as
degC′(L (D′′) ⊗ OC′), and this is then #(C ′ ∩ D′′). This yields that the definition is
well defined, and moreover gives us Axiom 1 and that our pairing depends only on linear
equivalence class. Furthermore, as degree is additive and the number of points in an in-
tersection is symmetric, this definition gives a symmetric bilinear pairing. Thus we have
an intersection pairing C · D = #(C ′ ∩ D′) for C,D very ample divisors. Now suppose
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C and D are not ample. We then repeat the process outlined in the proof of uniqueness,
using Lemma 3.11 to write C = C ′ − E′ and D = D′ − F ′ for C ′, D′, E′ and F ′ which
satisfy conditions (1)− (4). We define

C ·D = C ′ ·D′ − C ′ · F ′ − E′ ·D′ + E′ · F ′

Any other choice of C ′, E′, D′ and F ′ satisfying the requisite relations must be the same up
to linear equivalence, and thus give the same result. Similarly, descent to the Picard group
follows from the corresponding property on ample divisors, as does symmetric bilinearity.
Finally, to verify Axiom 1, we suppose C and D are nonsingular, irreducible curves which
may not be ample divisors. If

C ·D = C ′ ·D′ − C ′ · F ′ − E′ ·D′ + E′ · F ′,

for divisors satisfying (1)− (4) above, then

C ·D = #(C ′ ∩D′)−#(C ′ ∩ F ′)−#(E′ ∩D′) + #(E′ ∩ F ′),

which means by Lemma 3.13 we have

C ·D = degC′(i∗L (D′))− degC′(i∗L (F ′))− degE′(i∗L (D′)) + degE′(i∗L (F ′)).

By additivity, definition, and Lemma 3.13:

C ·D = degC′(i∗L (D))− degE′(i∗L (D)) = #(C ′ ∩D)−#(E′ ∩D)

= degD(j
∗L (C ′))−degD(j

∗L (E′)) = degD(j
∗L (D′−E′)) = degD(j

∗L (C)) = #(C∩D)

And we are done.

Corollary 3.16 (Bézout’s Theorem). Two curves C and D in P2 which share no irre-
ducible component intersect with multiplicity (degC)(degD) times.

Proof. Recall that the Picard group of P2 is Z, and is generated by any line l. Thus if
we let degC = c and degD = d, we may say (since degree is an isomorphism from the
Picard group to Z) that C ∼ cl and D ∼ dl′ for some other line l′ 6= l, which we may
suppose intersects l transversely. Then l · l′ = #(l∩ l′) = 1, since by definition any pair of
lines meet once in the projective plane. Then C ·D = cl · dl′ = cd(l · l′) = cd, and we are
done.

4 Intersection Multiplicity
The intersection pairing is interesting in and of itself, but it is difficult to compute with;
moving divisors explicitly is not always easy. The intersection pairing also lacks some
geometric motivation. In this section we attempt to remedy both these issues with the
following

Definition 4.1. The intersection multiplicity of two effective divisors C and D with
no common irreducible component at a point P ∈ C ∩D is dimk OX,P /(f, g), where f and
g are local defining functions for C and D respectively in a neighborhood of P . We write
the intersection multiplicity of C and D at a point P as (C ·D)P .
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Before we utilize this construction and demonstrate its relationship to the intersection
pairing, we require prove one elementary result regarding sheaf cohomology;

Lemma 4.2. Let F be a sheaf on a topological space X supported in a finite set of discrete
points {xi}. Then:

Hj(X,F ) =

{⊕
i Fxi j = 0

0 j > 0

Proof. Let ιi denote the inclusion of the point xi into X. Then F ∼= ⊕i(ιi)∗Fxi , with the
isomorphism given by taking any section s ∈ Γ(U,F ) to s|xi if xi ∈ U and 0 otherwise.
This induces an isomorphism on stalks, because each xi has a neighborhood containing
none of the other xi, and so on each stalk the map is the identity.

Now we have that Hj(X,F ) ∼= ⊕iH
j(X, (ιi)∗Fxi), since cohomology commutes with

direct sums. But we have that (ιi)∗ is exact, so the Leray spectral sequence

Hp(X,Rq(ιi)∗Fxi) =⇒ Hp+q({xi},Fxi)

degenerates on page two (in the sense that the row q = 0 is the only nonzero row), yielding
isomorphisms

Hp(X, (ιi)∗Fxi)
∼= Hp({xi,Fxi)

the global sections functor is exact on a point, because the only open cover of the point is
the point itself, so we are done.

Proposition 4.3. Suppose C and D are effective divisors on X with no irreducible com-
ponent in common. Then

C ·D =
∑

P∈C∩D
(C ·D)P

In particular, since the left hand quantity is finite, the right hand quantity is as well.

Proof. We will show that ∑
P∈C∩D

(C ·D)P

satisfies the axioms of the intersection pairing, and is thus (by uniqueness) equal thereto.
First, the pairing is clearly symmetric, so symmetry is satisfied. If C and D are nonsin-
gular, irreducible, and intersect transversely at each point P where they intersect, then
(C · D)P = dimk(OX,P /(f, g)). But (f, g) = mP , so OX,P /(f, g) = k and (C · D)P =
dimk(OX,P /(f, g)) = 1. Thus for curves C and D which are irreducible and intersect
transversely, we have ∑

P∈C∩D
(C ·D)P =

∑
P∈C∩D

1 = #(C ∩D)

and Axiom 1 is satisfied as well. If C and C ′ have no irreducible component in common
with D, then neither does C + C ′; furthermore, if C is locally defined near a point P by

12



fP and C ′ by f ′
P , we have that C + C ′ is locally defined by fP f

′
P . Suppose also that D′

is defined near a point P by gP . In this case, we have∑
P∈C∩D

((C + C ′) ·D)P =
∑

P∈C∩D
dimk(OX,P /(fP f

′
P , gP ))

then by Lemma 2.1 we have that

dimk(OX,P /(fP f
′
P , gP )) = dimk(OX,P /(f

′
P , gP )) + dimk(OX,P /(fP , gP )),

so summing over each point in the intersection yields that∑
P∈C∩D

dimk(OX,P /(fP f
′
P , gP )) =

∑
P∈C∩D

dimk(OX,P /(f
′
P , gP )) + dimk(OX,P /(fP , gP )).

Then by definition we may conclude that∑
P∈C∩D

((C + C ′) ·D)P =
∑

P∈C∩D
(C ·D)P + (C ′ ·D)P

and bilinearity is satisfied. Thus it suffices to show that this expression is invariant under
linear equivalence; that is, it induces a well-defined map on the Picard group. Consider
C ∩D as a subscheme of C, and note that its structure sheaf will be OC/L (−D)⊗OC ,
because L (−D) is the ideal sheaf of D. This is a sheaf with stalk equal to zero over any
closed point which is not in D, and equal to OX,P /(f, g) over any point in the intersection.
This gives us the following exact sequence of sheaves over C,

0 → L (−D)⊗OC → OC → OD∩C → 0,

and also by Lemma 4.2 that

dimH0(X,OC∩D) =
∑

P∈C∩D
(C ·D)P .

But simultaneously, we have that (as the Euler characteristic is additive on exact se-
quences)

−χ(L (−D)⊗OC) + χ(OC) = χ(OD∩C),

where χ(F ) =
∑

i(−1)i dimk(H
i(X,F )) as usual. But higher cohomology of sheaves with

discrete support is trivial (Lemma 4.2), so

−χ(L (−D)⊗OC) + χ(OC) = dimk H
0(X,OC∩D) =

∑
P∈C∩D

(C ·D)P ,

since the right hand side thus depends only on the sheaf L (D) up to isomorphism, or
(equivalently) the divisor D up to linear equivalence, the left hand side does as well. This
combined with symmetry shows that this pairing induces a well defined pairing on the
Picard group, and we are done.

This construction is especially conducive to working out examples:

13



Example 4.4 (Quadratic). Let X = P2, C be the vanishing set of the global section x2−yz
of O(2), and D be the vanishing set of the global section y of O(1) (here by vanishing of
f we mean the set of all points P where f ∈ mP ). The intersection C ∩D contains all the
points where y and x2 − yz are in mP . Consider the affine patch {z 6= 0}, and suppose
that C ∩D has a point P outside that open set. Clearly the point P = [0 : 0 : 1] in this
patch is in C ∩D. We seek to compute the intersection multiplicity at this point. For this
it will suffice to work in the affine plane, with the equations x2 − y = 0 and y = 0. Then
we compute OX,P = k[x, y](x,y) and

OX,P /(x
2 − y, y) = k[x]x/(x

2) ∼= k ⊕ k,

and so (C · D)P = 2. This confirms our intuition from calculus that the multiplicity of
the quadratic’s zero is 2. But are there no other points in the intersection? There are no
other intersections in this affine patch, so it remains only to check the points at infinity.
If z ∈ mP , then x2 − yz ∈ mP implies x ∈ mP by primality, so if y ∈ mP we have that
x, y, z ∈ mP . But (x, y, z) 6∈ Proj k[x, y, z] as we exclude the irrelevant ideal, so there is no
intersection at infinity and we have verified Bézout’s theorem in this case.
Example 4.5. Blow up a point O in P2 to obtain a birational map π : P̃2 → P2 and let E
denote the exceptional divisor. Let L be a line in P̃2; that is, an irreducible subscheme of
P̃2 which is isomorphic to P1. Suppose without loss of generality (up to an automorphism)
that O is the origin in our coordinates. Then if L lies at the line at infinity, the intersection
with E is trivial; we see this because π is an isomorphism on L and π(L) 63 O, thus
L∩E = ∅. Otherwise, we can work in an affine patch centered at O, and write L as one of
the (possibly multiple) irreducible components of V (ax+by+c, xw−yz) for a, b constant.
When c 6= 0, we have that V (ax+ by+ c, xw− yz) is irreducible and does not meet E (E
is the locus x = y = 0; setting x = y = 0 and ax+ by + c = 0 simultaneously implies that
c = 0). This set forms an open and dense subset of the set of lines in P̃2, so we may say
the generic line does not intersect E. But what if c = 0? Then we can assume without
loss of generality that a 6= 0 and write V (x − by, xw − yz) = V (x − by, y(bw − z)). This
thus includes two irreducible components, L := V (x − by, bw − z) and V (x − by, y) = E.
Passing to the affine patch w 6= 0, we obtain that L = V (x− by, z − b). As such, L ∩E is
the point x = y = 0, z = b. At this point, we compute

dimk OP̃2,P
/(f, g) = dimk(k[x, y, z]/(b− z))/(x− by, y) = 1

Where we quotient first by (b−z) because the surface we’re working in is given in the local
coordinates by b − z, and then we quotient by the defining functions for the two ideals.
Thus the line intersects the exceptional divisor transversely at exactly one point; we then
have

L · E =

{
1 π(L) meets O

0 otherwise
Remark 4.6. In the previous two examples, we talk rather loosely about coordinates equal-
ing zero, using more of the language of varieties than of schemes. Effectively, when we
say “a point where x = 0” we mean “a point P such that x lands in the maximal ideal
at P after the action of the appropriate line bundle’s local isomorphism to the structure
sheaf”. We can then speak of substitution and generally use the standard rules of algebra,
by working in affine coordinates and using the substitution laws of a quotient of rings.
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5 Self Intersections and Blowups
Intersection theory has myriad applications across a wide range of disciplines in algebraic
geometry and beyond. For the this paper, we wish to introduce only one of these. One
of the interesting features of the intersection pairing is the ability to compute “how many
times a curve intersects itself”:

Definition 5.1. Let C be a divisor in a surface X. The self intersection of C in X is
C2 = C · C.

Of course, this construction measures the number of times a curve intersects a slightly
deformed copy of it, and finds an interesting application in birational geometry. It is well-
known that every birational transformation of surfaces factors through a finite number of
blowups of points. As such, characterizing birational transformations is a fruitful pursuit.
It turns out that self intersection is the correct way to go about this; the exceptional divisor
of every blowup of a point has self intersection (−1), and conversely, every curve with self
intersection (−1) is the exceptional divisor of such a blowup. Here we only scratch the
surface of this interesting theory with a very simple example, however, the techniques we
use should generalize well.

Lemma 5.2. Let π : X̃ → X be any birational transformation of surfaces which is an
isomorphism away from a point P on X, such that π−1(P ) = E is a divisor (in particular,
the blowup of a point). Let C and D be linearly equivalent curves on X. Then π−1(C)
and π−1(D) are linearly equivalent.

Proof. Consider π−1(C) and π−1(D) as sets. These will be closed, as π is a continuous
map; give them the reduced induced subscheme structure. On a sufficiently fine open cover
{Ui}, we have locally defining functions fi for C and gi for D. Pulling those functions back
by π♯, we have that (since π♯ is a homomorphism of local rings) π♯(fi) ∈ mP,X if and only
if fi ∈ mP and symmetrically for gi. Thus the points cut out by π♯(fi) are exactly π−1(C),
and similarly for D. Furthermore, since we give the preimage the reduced subscheme
structure, it is reduced; but so are C and D. In particular, no irreducible subscheme
appears in either with multiplicity greater than one. From this we conclude that f−1(C)
is defined by f ♯(fi) locally, and similarly for f−1(D) and f ♯(gi). But gi = hfi by the linear
equivalence of C and D for a rational function h and all i, so we have π♯(gi) = π♯(hfi) =
π♯(h)π♯(fi). π♯(h) is a rational function, and so we have linear equivalence.

Example 5.3. Let E be the exceptional divisor of P2 blown up at the origin (0, 0) =
V (x, y)3. Let C = V (x) ⊂ P2 and D = V (y) ⊂ P2. Then C · D = 1 as two lines meet
in P2 at exactly one point. Further consider C̃ and D̃, given by the strict transform of C
and D. The idea of this example is to argue that since π is an isomorphism away from
E, the intersection pairing of two divisors linearly equivalent C and D which do not meet
P is the same as the intersection pairing of the pre-image of those divisors under π, and
then to use Lemma 5.2 to compare those to the pre-images of C and D under π. Since the
pre-image of C and D include E, we’ll then compute π−1(C) ·π−1(D) = (C̃+E) · (D̃+E)
to deduce the intersection pairing of E with itself.

3Here we choose, arbitrarily, that the origin is the origin of the z ̸= 0 affine patch.
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Let A denote the affine patch of P2 containing the origin (clearly the divisors cannot
intersect away from the origin because the projection π is an isomorphism away from
the origin). Then the strict transform C̃ of C can be described as a subset of A2 × P1

(with affine coordinates (x, y) and projective coordinates [z : w]) as C̃ = V (x, xz − yw).
Similarly, D̃ can be described as D̃ = V (y, xz − yw). In the affine patch z 6= 0 we may
dehomogenize to obtain C̃ = V (x, x − yw) = V (yw, x − yw). This decomposes into two
irreducible components; V (w, x − yw) is the image of the strict transform C̃ under this
dehomogenization and V (y, x − yw) is the exceptional divisor. They intersect (trans-
versely) at V (x, y, w). When w 6= 0 there is no intersection; we dehomogenize to obtain
V (x, xz−y), which yields the single irreducible component V (x, y) the exceptional divisor.
A symmetric argument shows that D̃ intersects the exceptional divisor (transversely) at
the point V (x, y, z), and so the curves do not intersect. (They cannot intersect away from
the exceptional divisor, and they do not intersect on the exceptional divisor). They are
also effective divisors, because they are given by curves. Thus we obtain that C̃ · D̃ = 0
by Proposition 4.3.

Consider C̃ + E and F = π−1(V (x− 1)). By Lemma 5.2, π−1(C) = E + C̃ is linearly
equivalent to the line π−1(V (x − 1)), and π−1(D) = E + D̃ is linearly equivalent to
π−1(V (y − 1)). Since π is an isomorphism away from E and neither π−1(V (x − 1)) nor
π−1(V (y − 1)) meet E, we have that their intersection pairing is just the intersection
pairing V (x− 1) · V (y − 1) in P2, which is one. This means that

(C̃ + E) · (D̃ + E) = 1.

But we already have that C̃ · E = D̃ · E = 1, and that C̃ · D̃ = 0, so we obtain

C̃ · D̃ + C̃ · E + D̃ · E + E · E = 1,

or 0 + 1 + 1 + E · E = 1. Thus E · E = −1.
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